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Abstract

The total dominating set S in a connected graph (5 is called a minimal total dominating set if no proper

~

: T o + g .
subset of S is a total dominating set of (5 . The upper total domination number f (G) of (& is the maximum

cardinality of a minimal total dominating sets of (& . In this paper we discuss some results on upper total domination

number. It is shown that for any integer @ = 4 , there exists a connected graph (G such that i (G)=a and

y'G)=2a-4.
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1. INTRODUCTION

By a graph G = (V,E )_, we mean a finite undirected connected graph without loops or

multiple edges . For basic definitions and terminologies we refer to [1]. A total dominating set
(TDS) of a graph G with no isolated vertex is a set S of vertices of G such that every vertex is

adjacent to a vertex inS . Total domination in graphs was introduced by Cockayne, Dawes and
Hedetniemi [2] and is well studied in graph theory (see, for example [3, 4]). Every graph without

isolated vertices has a TDS, since S =V ( G ) is such a set. The total domination number y (G)

of G is the minimum cardinality of a TDS. Total domination is undefined for graphs with isolated
vertices. The total dominating set S’ in a connected graph G is called a minimal total dominating
set it no proper subset of S is a total dominating set of G. The upper total domination number

i (G) of G is the maximum cardinality of a minimal total dominating sets of G . Terms not
detined in the paper are used in the sense of Harary [1]. For domination parameters we refer to [5].

2. The upper total domination number

Example 2.1 For the graph G given in Figure 1, S, = {v2§v4?v5} and S, = {v3,v4,v5} are the

minimum total dominating sets of G so that y, (G)=3. The set S = {v,,v:.,,vj,vé} IS a total

dominating set of G and it is clear that no proper subset of .S is the total dominating set of &
and so 5 is a minimal total dominating set of G . Also it is easily verified that no five element or

sIX element subset is a minimal total dominating set of & , it fdllows that : g (G) =4

148



ISSN 0976-5417 Cross. Res.: Dec. 2014 Vol. 5 No.2

Vy
Figure 1

Remark 2.2 Every minimum total dominating set of & is a minimal total dominating set of G
and the converse is not true. For the graph G given in Figure 1, 5 = {Vl,v3jv5,v6} ‘s 2 minimal

total dominating set but not a minimum total dominating set of G .

Theorem 2.3 For a connected graph G, 2<7,(G)<y (G)<n.

Proof: We know that any total dominating set needs at least two vertices and so 7, (G)Z 2 . Since

every minimal total dominating set is also a total dominating set, 7, (G)S x (G) Also, since

(G) is a total dominating set of G , it is clear that o (G) <n.Thus2 <y, (G) Ay (G) -

Remark 2.4 The bounds in Theorem 2.3 are sharp. For any graphG =K, 7, (G)=2 and

g (G) — 2 . Also, all the inequalities in the theorem are strict. For the graph G given in Figure 1,
Y, (G)"-—'?),, 7/,+(G)=4 and n =6 so that 2 <"*/{(G)<)/f(G)< n.

Theorem 2.5 For a connected graph &, 7, (G) =n ifand only if ¥, (G) =n.

Proof: Let 7, (G)z it Then S = V(G) is the unique minimal total dominating set of & . Since

no proper subset of S is a total dominating set, it is clear that S is the unique }, - set of (G and

g5 ol (G) = 1. The converse follows from Theorem 2.5.

Theorem 2.6 For any integera > 4, there exists a connected graph G such that y, (G)= a and
y"(G)=2a—-4.

Frool: Lev P ix.y, (l _z':ia—B).be a path of order 2. LetC :v,,v,,v;,V,,V,V,. Let G be a
oraph obtained from P (1 Siéa—3) and C. by joining v, with each X, (lSz'iia—3). The
graph G is shown in Figure 2.
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Figure 2

First we claim that 7, (G)z i let A = {vl,,xl,.xz,...,xﬂ_j,}. It 1s easily observed that X
is a subset of every minimum total dominating set of G and so }, (G)Z.a—3+l =@~2;Itis
easily verified that X © {x}; x ¢ X is not a total dominating set of & and so 7, (G)i_?_ a. Now
S, :Xu{v?_,,v3}, 3, IXU{V3,V4} and O, = Xu{vuvs} are the minimum total dominating
sets of G so thaty, (G) =d.

Next we show thatyf(G):2a-——4. Now D = {xl,xz,...,xw,yl,yzﬂ...,ya_3,,v3,v4} 1S a

total dominating set of &G . We show that D is a minimal total dominating set of & . Let D’ be
any proper subset of D . Then there exists at least one vertex say v € D such thatv & D' . Suppose

that v=x, for somei (1 <i<a—3). Then the vertex Y, (l “isa —3) will be isolate in<D'>.
Therefore D' is not a total dominating set of & . Now, assume that v=y for some
i (1<i<a-3). Then the vertex x, (1 <i<a—3) will be isolate in (D’) and so D' is not a total
dominating set of G . Now, assume that v=v; or v,. Then the vertex v, or v; will be isolate in
<D’> and so D' is not a total dominating set of & . Therefore any proper subset of D is not a

total dominating set of & . Hence D is a minimal total dominating set of G and so
}/f+(G)22a—4. We show that }/,+(G):2a—~4. Suppose that there exists a minimal total

dominating set 77 of G such tllat|T|3_>2a—-3 . Then ‘T’ Is either 2a—3 or 2a—2 . Let
[T' =2a—3 . Suppose thatv, ¢ T . Since <T> has no isolated vertex, x,,y, €1 for every
! (l Sfiia——3) et S’={x” Koy v o ay Wiy Valiveus W } . Since I, :S'U{vzg Vi }
S, :S'u{v3,v4} and 5, =8 u{v4,v5} are total dominating sets of G and since S' T, it
follows that 7" contains either S,, S, or S, and so 7 is not a minimal total dominating set of &

, which is a contradiction. Suppose thatv, € 7. Then T" consists of M = {x] s Ky sarne X s } Since
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M, =Mu{v”v2,,v3} M :Mu{v”vﬁ,m} and M3=Mu{v“v3,v4} are total
dominating sets of G , it follows that 7 contains any one of M .M,,M;, which is a

contradiction to 7' is a minimal total dominating set of G .Theretore ¥ (G)¢2a—3. By the

similar argument we can prove v, (G) 22a-2.Thus 7, (G) =2a-4.

Open Problem 2.7

3. Conclusion

This study is undertaken to highlight the concept and basic properties of upper total

domination number.
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