The Upper Total Domination Number of a Graph

V. Sujin Flower, Department of Mathematics, Holy Cross College (Autonomous), Nagercoil, India.

Dr. J. Deva Raj, Department of Mathematics, Nesamony Memorial Christian College, Marthandam-629 165, Tamil Nadu, India.

Abstract

The total dominating set S in a connected graph G is called a minimal total dominating set if no proper subset of S is a total dominating set of G. The upper total domination number $\gamma_i^+(G)$ of G is the maximum cardinality of a minimal total dominating sets of G. In this paper we discuss some results on upper total domination number. It is shown that for any integer $a \ge 4$, there exists a connected graph G such that $\gamma_i(G) = a$ and $\gamma_i^+(G) = 2a - 4$.

Keywords: total domination number, minimal total dominating set, upper total domination number.

Mathematics Subject Classification: 05C69

Field: Graph Theory; Subfield: Domination

1. INTRODUCTION

By a graph G = (V, E), we mean a finite undirected connected graph without loops or multiple edges. For basic definitions and terminologies we refer to [1]. A total dominating set (TDS) of a graph G with no isolated vertex is a set S of vertices of G such that every vertex is adjacent to a vertex in S. Total domination in graphs was introduced by Cockayne, Dawes and Hedetniemi [2] and is well studied in graph theory (see, for example [3, 4]). Every graph without isolated vertices has a TDS, since S = V(G) is such a set. The total domination number $\gamma_t(G)$ of G is the minimum cardinality of a TDS. Total domination is undefined for graphs with isolated vertices. The total dominating set S in a connected graph S is called a minimal total dominating set if no proper subset of S is a total dominating set of S. The upper total domination number $\gamma_t(G)$ of S is the maximum cardinality of a minimal total dominating sets of S. Terms not defined in the paper are used in the sense of Harary [1]. For domination parameters we refer to [5].

2. The upper total domination number

Example 2.1 For the graph G given in Figure 1, $S_1 = \{v_2, v_4, v_5\}$ and $S_2 = \{v_3, v_4, v_5\}$ are the minimum total dominating sets of G so that $\gamma_t(G) = 3$. The set $S = \{v_1, v_3, v_5, v_6\}$ is a total dominating set of G and it is clear that no proper subset of S is the total dominating set of G and so S is a minimal total dominating set of G. Also it is easily verified that no five element or six element subset is a minimal total dominating set of G, it follows that $\gamma_t^+(G) = 4$.

Figure 1

Remark 2.2 Every minimum total dominating set of G is a minimal total dominating set of G and the converse is not true. For the graph G given in Figure 1, $S = \{v_1, v_3, v_5, v_6\}$ is a minimal total dominating set but not a minimum total dominating set of G.

Theorem 2.3 For a connected graph G, $2 \le \gamma_t(G) \le \gamma_t^+(G) \le n$.

Proof: We know that any total dominating set needs at least two vertices and so $\gamma_t(G) \ge 2$. Since every minimal total dominating set is also a total dominating set, $\gamma_t(G) \le \gamma_t^+(G)$. Also, since V(G) is a total dominating set of G, it is clear that $\gamma_t^+(G) \le n$. Thus $2 \le \gamma_t(G) \le \gamma_t^+(G) \le n$.

Remark 2.4 The bounds in Theorem 2.3 are sharp. For any graph $G = K_n$, $\gamma_t(G) = 2$ and $\gamma_t^+(G) = 2$. Also, all the inequalities in the theorem are strict. For the graph G given in Figure 1, $\gamma_t(G) = 3$, $\gamma_t^+(G) = 4$ and n = 6 so that $2 < \gamma_t(G) < \gamma_t^+(G) < n$.

Theorem 2.5 For a connected graph G, $\gamma_t(G) = n$ if and only if $\gamma_t^+(G) = n$.

Proof: Let $\gamma_t^+(G) = n$. Then S = V(G) is the unique minimal total dominating set of G. Since no proper subset of S is a total dominating set, it is clear that S is the unique γ_t - set of G and so $\gamma_t(G) = n$. The converse follows from Theorem 2.3.

Theorem 2.6 For any integer $a \ge 4$, there exists a connected graph G such that $\gamma_t(G) = a$ and $\gamma_t(G) = 2a - 4$.

Proof: Let $P_i: x_i, y_i$ $(1 \le i \le a - 3)$ be a path of order 2. Let $C_5: v_1, v_2, v_3, v_4, v_5, v_1$. Let G be a graph obtained from P_i $(1 \le i \le a - 3)$ and C_5 by joining v_1 with each x_i $(1 \le i \le a - 3)$. The graph G is shown in Figure 2.

Figure 2

First we claim that $\gamma_{\ell}(G) = a$. Let $X = \{v_1, x_1, ..., x_2, ..., x_{a-3}\}$. It is easily observed that X is a subset of every minimum total dominating set of G and so $\gamma_{\ell}(G) \ge a - 3 + 1 = a - 2$. It is easily verified that $X \cup \{x\}$; $x \notin X$ is not a total dominating set of G and so $\gamma_{\ell}(G) \ge a$. Now $S_1 = X \cup \{v_2, v_3\}$, $S_2 = X \cup \{v_3, v_4\}$ and $S_3 = X \cup \{v_4, v_5\}$ are the minimum total dominating sets of G so that $\gamma_{\ell}(G) = a$.

Next we show that $\gamma_1^+(G) = 2a - 4$. Now $D = \{x_1, x_2, ..., x_{a-3}, y_1, y_2, ..., y_{a-3}, v_3, v_4\}$ is a total dominating set of G. We show that D is a minimal total dominating set of G. Let D' be any proper subset of D. Then there exists at least one vertex say $v \in D$ such that $v \notin D'$. Suppose that $v = x_i$ for some i $(1 \le i \le a - 3)$. Then the vertex y_i $(1 \le i \le a - 3)$ will be isolate in $\langle D' \rangle$. Therefore D' is not a total dominating set of G. Now, assume that $v = y_i$ for some $i \ (1 \le i \le a - 3)$. Then the vertex $x_i \ (1 \le i \le a - 3)$ will be isolate in $\langle D' \rangle$ and so D' is not a total dominating set of G. Now, assume that $v = v_3$ or v_4 . Then the vertex v_4 or v_3 will be isolate in $\langle D' \rangle$ and so D' is not a total dominating set of G. Therefore any proper subset of D is not a total dominating set of G. Hence D is a minimal total dominating set of G and so $\gamma_t^+(G) \ge 2a-4$. We show that $\gamma_t^+(G) = 2a-4$. Suppose that there exists a minimal total dominating set T of G such that $|T| \ge 2a - 3$. Then |T| is either 2a - 3 or 2a - 2. Let |T|=2a-3. Suppose that $v_1 \notin T$. Since $\langle T \rangle$ has no isolated vertex, $x_i, y_i \in T$ for every $i (1 \le i \le a - 3)$. Let $S' = \{x_1, x_2, ..., x_{a-3}, y_1, y_2, ..., y_{a-3}\}$. Since $S_1 = S' \cup \{v_2, v_3\}$ $S_2 = S' \cup \{v_3, v_4\}$ and $S_3 = S' \cup \{v_4, v_5\}$ are total dominating sets of G and since $S' \subseteq T$, it follows that T contains either S_1 , S_2 or S_3 and so T is not a minimal total dominating set of G , which is a contradiction. Suppose that $v_1 \in T$. Then T consists of $M = \{x_1, x_2, ..., x_{a-3}\}$. Since

 $M_1 = M \cup \{v_1, v_2, v_3\}$, $M_2 = M \cup \{v_1, v_5, v_4\}$ and $M_3 = M \cup \{v_1, v_3, v_4\}$ are total dominating sets of G, it follows that T contains any one of M_1, M_2, M_3 , which is a contradiction to T is a minimal total dominating set of G. Therefore $\gamma_i^+(G) \neq 2a-3$. By the similar argument we can prove $\gamma_t^+(G) \neq 2a-2$. Thus $\gamma_t^+(G) = 2a-4$.

Open Problem 2.7

For every pair a, b of integers with $2 \le a < b$, does there exists a connected graph G such that $\gamma_i(G) = a$ and $\gamma_i^+(G) = b$?

3. Conclusion

This study is undertaken to highlight the concept and basic properties of upper total domination number.

References

Harary F, (1972). Graph Theory, Addition-Wesley, Reading, MA,.

Haynes T.W and Hedetniemi S.T, (1988). Fundamentals of domination in graphs, Marcel Dekker, New York.

Cockayne E.J, Dawes R.M and Hedetniemi S.T, (1980). Total domination in graphs, Networks, 10, 211-219.

Lam P.C.B and Wei B, (2007). On the total domination number of graphs, Utilitas Math., 72, 223-240.

Henning M.A and Yeo A, (2007). A new upper bound on the total domination number of a graph, Electronic J of Combinatorics, 14, #R65.